
1

The OCA Object Model
Features and mechanisms of Open

Control Architecture version 1.4,
standardized in the AES70-2018

standards suite.

Basics

mission

scope

virtual control panel

control classes

APIs

datatype classes

exclusions

Features

Control objects

how objects work

OcaSwitch example

Control classes

example

categories

class tree

class repertoire

actuators

sensors

blocks, matrices, networks

agents

managers

Mechanism details

class IDs

nonstandard class IDs

example

Mechanism details, continued

blocks

blocks and signal flow

example

blocks and paths

block enumeration

matrices

examples

control aggregation

example

signal flow

dynamic configuration

connection management

details

objects and structures

stream channel mapping

adaptations

time and clocking

scripting

libraries

physical position

Device model

Design example

Resources

Contents

Jeff Berryman
Senior Scientist, Bosch Communications

ja.berryman@us.bosch.com

OCA Object Model

2
v07

OCA Object Model

Basics

basics

OCA Object Model

3
v07

OCA Object Model

OCA's mission is to provide full-function device control and monitoring for:

• Professional applications
• Multivendor systems
• Mission-critical or noncritical applications
• Media networking applications of all sizes - 2 to 10,000 nodes or more
• Secure or insecure implementations
• Multicontroller systems
• Controllerless (peer to peer) systems
• Audio devices (now), video devices (future), and possibly related equipment (farther future)
• Devices of all sizes - wall panel to mixing desk, possibly with tiny processors
• Dynamically-reconfigurable devices
• Products with proprietary features

using:

• Networks of all speeds, from kBits/sec upward
• Multiple media transport architectures
• Heterogeneous networks - LAN, WAN, IP, non-IP, etc.

and supporting:

• Sharing and reuse of designs, within and among manufacturers, trade associations, and standards bodies.
• Orderly application evolution and expansion over many years, if not decades.

mission

OCA Object Model

4
v07

4

OCA Object Model

v07

What's the OCA
Object Model?

• A control protocol definition - although it does lead to control protocol definitions.

• A media transport protocol definition

• A programming model for devices

• A user interface model for controllers

What isn't the
OCA Object
Model?

• An object-oriented framework for media device network control interfaces

• A rich and extensible repertoire of control class definitions that represent the signal
processing, control logic, and network connection functions of media devices

• A set of datatype class definitions that specify data elements used by the control
classes

• A standardized device model for controllable devices

• The OCA model is a way of modeling media device network control interfaces.
By itself, it is not a protocol standard.

• AES70 is a control architecture and protocol standard based on the OCA model.

What's the
difference between
the OCA object
model and AES70?

scope

OCA Object Model

5
v07

OCA Object Model

At a glance: OCA is a kit for defining virtual control panels.

virtual control panel

OCA Object Model

6
v07

6

OCA Object Model

v07

• An OCA control class is the definition of a network control API for a particular
kind of device function - switch, gain control, level monitor, etcetera.

• OCA control classes are defined for both control and monitoring functions.

• Each OCA class has a name beginning with "Oca". For example, the switch control
class is called OcaSwitch.

• Control classes are instantiated into control objects. For example, a device with
two switch functions would have two OcaSwitch objects.

• OCA objects define control APIs but not internal implementation.

• A device's OCA control API is simply the union of all its individual object APIs.

Control classes

• Proprietary features may require special control classes. OCA provides a way for
manufacturers to define these in a way that coexists harmoniously with standard
OCA classes.

• Devices can hide the existence of proprietary objects, if necessary.

• OCA's virtual control panel objects do not expose proprietary elements any
more than physical control panel knobs and switches would.

Proprietary control
classes

control classes

OCA Object Model

7
v07

7

OCA Object Model

v07

• Control class APIs are normal object-oriented interfaces with:

– Properties variables that define the state of the object

– Methods functions that change property values or do other things

– Events predefined conditions that arise in the object and
cause notifications to be returned to controllers

Control Class APIs

• Datatype classes ("datatypes" for short) have no APIs, they simply define data
formats that are exchanged by controllers and control objects. Thus, they only have:

– Properties variables ("fields") that define the data content

• An OCA datatype may be a simple element, e.g.

– OcaDB a value in decibels; maps directly into float32.

or a more complex structure, e.g.

– OcaTimePTP a value of time in PTP format; contains the following:
Negative boolean that is TRUE if time value is negative
Seconds 48 bit unsigned integer value of seconds
Nanoseconds 32 bit unsigned integer value of nanoseconds

Datatype Classes

APIs
datatype classes

OCA Object Model

8
v07

8

OCA Object Model

v07

• OCA doesn't define how a device is implemented. OCA classes only define the
device's network API, not its internal structure.

• An OCA device is free to define whatever control objects it needs to surface its
control model. Which functions it surfaces is a product decision.

• OCA defines control interfaces for device functions, but doesn't specify how those
functions work. For example, OCA defines filters and filter parameters, but
doesn't specify the resulting filter transfer functions.

Excluded: Device
implementation

• The current OCA object model doesn't include controllers.

• At present, OCA says nothing about what's beyond a device's network interface.

• We could define OCA classes for controllers and their UI elements, if we wanted to.

Excluded:
Controllers

Excluded: Protocols • The OCA model does not specify a particular network protocol.

• AES70 defines a binary RPC protocol and will soon include a JSON version as well.

• Other protocols are completely feasible, as long as they allow controllers to call
Methods and receive notifications of Events, and have reasonably flexible abilities
to transfer parameter data of various types.

exclusions

OCA Object Model

9
v07

OCA Object Model

Features

features

OCA Object Model

10
v07

OCA Object Model

• Basic application functionality
– Signal processing & routing control
– Full signal & state monitoring
– Reconfigurable device support
– Internal signal path control

• Security features
– Key management

• Device structuring
– Element groups and hierarchies
– Arrays and matrices of control elements

• Connection management
– Media streams
– Non-media streams

• Time and clocking management
– Multiple time reference support
– Multiple media clock support

• Codec support
– Multiple codec support

• Datasets (data block storage & retrieval) (in next release)

• Media file storage & playout (in next release)

• Physical location features
– Location awareness
– Object-based audio support

• Control management
– Control aggregation (grouping, mastering, etc.)
– Event and subscription mechanisms
– Device enumeration support
– Multiple controller support
– Command batching (in next release)
– Realtime command execution (in next release)
– Prescheduled, prestored control tasks.

• Prestored configuration store & recall
– Entire device
– Subsets

• Power supply management
– Multiple power sources
– Batteries
– Failover features

• Reusability features
– Reusable component support
– Shareable custom designs

• Extensibility support
– Proprietary extension mechanism with inheritance
– Ability to evolve gracefully
– Upward, downward, & lateral compatibility

OCA Features

features

OCA Object Model

11
v07v07 11

OCA Object Model control objects

Control objects

instances of control classes

OCA Object Model

12
v07v07 12

OCA Object Model

How control objects (or just "objects") Work

• Object number
– Every object is an instance of an OCA control class.
– Every object has an object number ("ONo") that is unique within the device.
– An ONo is a 32-bit unsigned integer
– ONo values may be freely chosen, except that the range 0..4095 is reserved.

• Properties and Methods

– Objects have properties, properties have values.

– Objects have Get(...) and Set(...) methods for retrieving and changing property values.
– Some objects have action-oriented methods, too, e.g. Start(...).

• Events

– Objects have Events that cause Notifications to be emitted when the events are triggered.
– Notifications are messages to Subscribers.
– Subscribers are controllers that have created Subscriptions via the Subscription Manager object.

• The PropertyChanged event

– The most important kind of event
– Defined for all OCA objects
– Triggered when a property value changes
– Notable use: allows multiple controllers to stay in sync without polling.

how objects work

OCA Object Model

13
v07

OCA Object Model control classes

Control Classes

OCA Object Model

14
v07

14

OCA Object Model

class OcaSwitch /* OCA class for n-position switch */
{

int Position /* current switch position */
list<string> PositionNames /* names of switch positions */
list<bool>PositionEnable /* flags to enable positions */

GetPosition(...) /* Get current position */
SetPosition(...) /* Set new position */
GetPositionNames(...) /* Get list of position names */
SetPositionNames(...) /* Set list of position names */
GetPositionEnable(...) /* Get list of position-enable switches */
SetPositionEnable(...) /* Set list of position-enable switches */

}

To change the switch's position, the controller invokes SetPosition(...) .

To discover the switch's position, the controller invokes GetPosition(...) .

To configure the switch's position names, the controller invokes
SetPositionNames(...) .

... and so on

Class example

Used to control a
device parameter with
a fixed number of
predefined states.

Examples of such
states:
• on/off
• high/medium/low
• left/center/right
• etcetera

The controller can
select the desired state
by specifying its index.
Optionally, the states
may have names
and/or be selectively
enabled.

Used to control a
device parameter with
a fixed number of
predefined states.

Examples of such
states:
• on/off
• high/medium/low
• left/center/right
• etcetera

The controller can
select the desired state
by specifying its index.
Optionally, the states
may have names
and/or be selectively
enabled.

class example

OCA Object Model

15
v07

OCA Object Model

Categories of Classes

categories

Workers Classes that deal with audio processing

Actuators Classes that control audio processing

Sensors Classes that monitor the device

Blocks and Matrices Classes that collect objects into organized groups

Agents Classes that affect the flow and timing of control

Networks Connection management classes

Managers Device housekeeping classes

OCA Object Model

16
v07

OCA Object Model

Class Tree

Showing
inheritance from
base classes

Workers: OcaWorker

OcaGain
OcaSwitch
etc

OcaDeviceManager
OcaSecurityManager
OcaSubscriptionManager
OcaNetworkManager
OcaMediaClockManager
OcaCodingManager
OcaPowerManager
etc

OcaGrouper
OcaRamper
OcaNumericObserver
OcaMediaClock3
OcaTimeSource
OcaPowerSupply
OcaPhysicalPosition
etc

OcaLevelSensor
OcaTemperatureSensor
etc

Actuators: OcaActuator

Sensors: OcaSensor

OcaBlock
OcaBlockFactory
OcaMatrix

OcaControlNetwork
OcaMediaTransportNetwork

Networks: OcaApplicationNetwork

Agents: OcaAgent

Managers: OcaManager

Root: OcaRoot

class tree

OCA Object Model

17
v07

OCA Object Model repertoire

Control Class Repertoire

OCA Object Model

18
v07

OCA Object Model

Actuators Classes that control audio processing

Elementary types

OcaBasicActuator Base class for weakly typed actuators

OcaBooleanActuator Weakly typed actuators ...

OcaInt8Actuator ...

OcaInt16Actuator ...

OcaInt32Actuator ...

OcaInt64Actuator ...

OcaUint8Actuator ...

OcaUint16Actuator ...

OcaUint32Actuator ...

OcaUint64Actuator ...

OcaFloat32Actuator ...

OcaFloat64Actuator ...

OcaStringActuator ...

OcaBitStringActuator ...

OcaActuator Base class for classes that control audio processing

OcaMute Signal mute

OcaPolarity Signal inversion

OcaSwitch 1 of n selector

OcaGain Simple gain in dB

OcaPanBalance Pan or balance control

OcaDelay Signal delay in mSec

OcaDelayExtended Signal delay in mSec, ft, m

OcaFrequencyActuator Frequency

OcaFilterClassical Bessel, Butterworth, etc.

OcaFilterParametric Peaking or shelving parametric filter

OcaFilterPolynomial Rational polynomial filter

OcaFilterFIR FIR specified by coefficients

OcaFilterArbitraryCurve Magnitude vs freq curve

OcaDynamics Generalized compressor/expander

OcaDynamicsDetector Side-chain detector

OcaDynamicsCurve Dynamics input vs output level curve

OcaSignalGenerator Multi-waveform signal generator

OcaSignalInput Device signal input port

OcaSignalOutput Device signal output port

OcaTemperatureActuator Temperature parameter

OcaIdentificationActuator Device identification light or other flag

actuators

OCA Object Model

19
v07

OCA Object Model

Sensors Classes that monitor the device

OcaSensor Base class for classes that monitor the device

OcaLevelSensor Signal level
OcaAudioLevelSensor Audio level with standard meter laws

OcaTimeIntervalSensor Time interval

OcaFrequencySensor Frequency

OcaTemperatureSensor Temperature

OcaIdentificationSensor Monitors a button push or something

OcaBasicSensor Base class for weakly typed sensors for general use

OcaBooleanSensor ...
OcaInt8Sensor ...
OcaInt16Sensor ...
OcaInt32Sensor ...
OcaInt64Sensor ...
OcaUint8Sensor ...
OcaUint16Sensor ...
OcaUint32Sensor ...
OcaUint64Sensor ...
OcaFloat32Sensor ...
OcaFloat64Sensor ...
OcaStringSensor ...
OcaBitStringSensor ...

sensors

OCA Object Model

20
v07

OCA Object Model

Blocks, Matrices, and Networks

blocks
matrices

networks

Blocks Classes that allow grouping of device control elements

OcaBlock Container that allows collection of Workers, Agents, and Networks into organized groups

OcaBlockFactory Constructor for OcaBlock objects; to be used with dynamically-reconfigurable DSP devices

Matrices Class for managing rectangular arrays of objects

OcaMatrix Specialized container for 2-dimensional arrays of processing elements; superset of conventional gain matrix.

Networks Connection management classes

OcaApplicationNetwork Abstract base class for other network classes

OcaControlNetwork Application network for transport of control traffic (e.g. an AES70 network)

OcaMediaTransportNetwork Application network for transport of media content (e.g. an AES67 network); connection management features

OCA Object Model

21
v07

OCA Object Model agents

Agents

OcaAgent Base class for agent classes

OcaGrouper Control aggregator

OcaRamper Time interval

OcaNumericObserver Frequency

OcaNumericObserverList Temperature

OcaPowerSupply Power supply or battery

OcaMediaClock3 Media clock

OcaTimeSource Time reference - PTP, GPS, internal clock, etc.

OcaPhysicalPosition Six-axis position & orientation in various formats

OCA Object Model

22
v07

OCA Object Model

Managers

OcaManagers Base class for manager classes

OcaDeviceManager Manages global device identification & status required

OcaSubscriptionManager Manages controllers' subscriptions to events required

OcaSecurityManager Manages encryption keys required for secure devices

OcaNetworkManager Collects media transport and control networks required

OcaMediaClockManager Collects OcaMediaClock3 objects optional

OcaDeviceTimeManager Holds master device time optional

OcaCodingManager Manages codecs optional

OcaLibraryManager Collects OcaLibrary objects optional

OcaTaskManager Manages and runs OCA Tasks optional

OcaAudioProcessingManager Contains global audio processing options optional

OcaFirmwareManager Provides a failsafe firmware upload feature optional

OcaDiagnosticManager Base class for proprietary debugging features optional

agents

OCA Object Model

23
v07v07 23

OCA Object Model mechanism details

Mechanism Details

OCA Object Model

24
v07v07 24

OCA Object Model

ClassIDs

• A ClassID is a multifield data structure that uniquely identifies a class.

• Each ClassID has an associated version number.

• The ClassID design allows graceful extension for:

– future evolution of OCA
– inclusion of proprietary classes

• Format

– ClassID ::= {i1.i2.i3. ...} where in is a nonzero positive integer called a class index.

– A class index uniquely identifies a class within its siblings at a particular level of the class tree.

– A class's ClassID is an ordered set of class indices that identify the entire lineage of the class, beginning with the
root class OcaRoot, whose class index is always 1.

– For example, a ClassID value of 1.2.12.7 is interpreted as follows:

• 1 designates the root class.
• 1.2 designates the second child of the root class.
• 1.2.12 designates the twelfth child of the class whose parent is 1.2.
• 1.2.12.7 designates the seventh child of the class whose parent is 1.2.12.

classIDs

OCA Object Model

25
v07v07 25

OCA Object Model

Class IDs, continued

• Nonstandard Class IDs

– A nonstandard class is either a proprietary class or a public class defined by someone other than the AES.

– Nonstandard classes are treated as custom extensions of the standard OCA class hierarchy.

– The organization responsible for the definition of a nonstandard class is called the class's authority.

– A nonstandard class must be defined either as a child of standard class or a child of a nonstandard class from
the same authority.

– In Class IDs of nonstandard classes, an authority key is interposed at the point of inheritance to identify the
defining authority.

• In such Class IDs, every class index to the right of the authority key is considered to be nonstandard.

– Authority keys are IEEE 24-bit public CID (Company ID) or OUI (Organizationally Unique Identifier) values.

• OUIs are used by companies who define MAC addresses

• CIDs are used by companies who don't define MAC addresses

• The address spaces of the two do not overlap.

nonstandard classIDs

OCA Object Model

26
v07v07 26

OCA Object Model

Class ID Example

classID example

OcaRoot

OcaWorker

OcaActuator

Parent for all classes

Parent for all workers

Parent for all actuators

OcaGain

1

1.1

1.1.1

1.1.1.5

OcaGainStepped 1.1.1.5.FFFFh.FA2AE9h.1

1.1.1.5.FFFFh.FA2AE9h.1

Standard

OcaGainUnequallyStepped 1.1.1.5.FFFFh.FA2AE9h.1.1

1.1.1.5.FFFFh.FA2AE9h.1.1

Nonstandard

Nonstandard
Class Indices

OcaGain Flag Authority ID

indicates next field is
an Authority ID

Class ID

OCA Object Model

27
v07

OCA Object Model

Blocks

• A Block is an instance of the OcaBlock class.

• Blocks

– Collect objects into meaningful groupings.
– Keep track of how signals flow among the objects they contain.
– Support construction and destruction of objects in dynamically-configurable devices.
– Contain a re-use mechanism to allow a block's definition to be used in multiple instances.

• Every object except Manager objects belongs to exactly one block.

• Blocks do not provide control aggregation (mastering, submastering, ganging, grouping, etc.) features.

– For these features, see Control Aggregation and Matrices.
– Control aggregation topologies and matrix structures are independent of block membership.

• Blocks may be nested to any depth.

blocks

OCA Object Model

28
v07

OCA Object Model

Blocks, continued

• Blocks are Workers. Therefore, each block has

– an object number
– an alphanumeric roleName property
– OcaPorts for signals flowing into and out of the block. See Signal Flow for an explanation of OCA signal flows.

• Each block has an optional organizationally unique blockType property

– Manufacturers may use blockType values to identify common block definitions for reuse in multiple products.
– Standards organizations and trade associations may use blockType to identify recommended device and module

profiles.

• Each block has object enumeration and search capabilities that

– allow controllers to enumerate all objects in the block (and, optionally) in nested blocks as well
– allow controllers to find objects in the block with given roleName values.

• At a minimum, each device must contain one block (the root block) to which all objects belong (except Managers).

– More advanced devices will have multiple nested blocks.

blocks

OCA Object Model

29
v07

OCA Object Model

Blocks and signal flow

• The OCA model represent signal paths through a block via the Signal Flow mechanism.

• A block's Signal Flow is its set of Signal Paths.

• Each signal path is a one-to-one connection from a source OcaPort to a sink OcaPort.

• An OcaPort is a signal path endpoint on a Worker object.

• OcaBlock objects, since they are Workers, have OcaPorts. These ports are used for inter-block signal paths.

• Agent objects do not have OcaPorts, since they do not perform signal processing or sensing.

blocks and signal flow

The OcaBlock class defines methods
controllers can use to enumerate and
optionally change signal paths that have
endpoints within the block.

Root Block Worker object

OcaPort on Block

Signal path

OcaPort on Worker

Block object

OCA Object Model

30
v07

OCA Object Model

Block example

block example

eight-channel
mono-out mic
preamp with
AES67 output

eight-channel
mono-out mic
preamp with
AES67 output

in (8)

OcaBlock

OcaBlock

"Ch(1)"

OcaBlock

processing

"Ch(8)"

""

in (1)

Oca
Summing
Point OcaGain

"Sum"

out

"Gain"

OcaBlock

OcaBlock

OcaGain OcaMute

OcaAudio
LevelSensor

OcaSwitch

OcaGain
out

OcaMedia
Transport
Network
Aes67

"Aes67"

OcaInput
in

"Phantom"

"input" "InputGain"

"Level"

"Gain" "Mute"

"EQ"

out

OcaBlock

OcaFilter
Classicalin

OcaFilter
Parametric

"HPF" "Peq(1)"

OcaFilter
Parametric

"Peq(2)"

OcaFilter
Parametric

"Peq(3)"

Device Root Block
with 8 channel blocks

Channel Block
with nested EQ block

EQ block

OCA class
name

instance-
specific

roleName

processing

/Ch(n)/EQ/HPF /Ch(n)/EQ/Peq2

/Ch(n)/Mute

n = 1... 8

OCA Object Model

31
v07

OCA Object Model

Blocks and paths

• Manufacturers should choose roleName values that are unique within the objects' containing blocks.

• If this is done, then an an object may be identified by a pathname that consists of the concatenation of the object's
name with the names of its containing block(s).

– The OCA model does not assume any specific pathname syntax - it represents paths simply as lists of
roleNames.

– If we choose to write pathnames as delimited concatenations of names and use "/" as a delimiter, then with an
appropriate name syntax discipline, pathnames can be used to construct URI strings.

• By convention, the root block has a null pathname.

• Examples of pathnames using "/" as a delimiter (these correspond to the mixer example on the previous slide):

/Gain Master gain

/Ch(2)/Mute Channel 2 mute

/Ch(4)/EQ/Peq(3) Channel 4's third parametric equalizer

blocks and paths

OCA Object Model

32
v07

OCA Object Model

Block enumeration

"Block enumeration" features allow a controller discovers what's inside a block, or a nest of blocks.

1. Objects. To discover the objects inside a block, a controller calls one of two OcaBlock methods:

• GetMembers(BlockONo) Returns list of all objects in the given block.

• GetMembersRecursive(BlockONo) Returns list of all objects in the given block and in all
contained blocks.

2. Signal flow. To discover the signal flow inside a block, a controller calls one of two OcaBlock
methods:

• GetSignalPaths(BlockONo) Returns all signal paths with at least one endpoint
in given block.

• GetSignalPathsRecursive(BlockONo) Returns all signal paths with at least one endpoint
in given block or in any contained block.

block enumeration

OCA Object Model

33
v07v07 33

OCA Object Model

Matrices

• A Matrix is an instance of the OcaMatrix class.

• Matrices collect sets of identical Worker objects ("crosspoints") into 2-dimensional arrays.

– A crosspoint may be any kind of OCA object, including an entire OcaGroup with multiple objects inside.
– All crosspoints of a given Matrix must reside in the same device.

• Crosspoints may be accessed:

– one at a time
– one row at a time,
– one column at a time, or
– one whole matrix at a time

• Matrix objects are controlled via an auxiliary object called the matrix proxy.

– The matrix proxy is identical to a crosspoint object.
– Calls to the proxy affect one or more crosspoints at once.
– Which crosspoints are affected is determined by OcaMatrix methods called SetXY(...) and SetXYLock(...).

• Matrices support multichannel operation, with each crosspoint accepting (n) input signals and delivering (m) output
signals.

matrices

OCA Object Model

34
v07v07 34

OCA Object Model

Matrix examples

OcaMute OcaGain
OcaFilter

Parametric
OcaDelay outin

matrix examples

1-channel 3x2
block matrix

M G F DM G F D

M G F DM G F D

M G F D M G F D

Proxy

M G F D
2-channel 3x3
matrix mixer

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

Oca
Gain

ProxyProxy
1-channel 3x2

matrix switcher

Oca
Switch

Oca
Switch

Oca
Switch

Oca
Switch

Oca
Switch

Oca
Switch

Oca
Switch

OCA Object Model

35
v07

OCA Object Model

Control aggregation (grouping, mastering, submastering, and so on)

• Control aggregation is performed by objects of the OcaGrouper class.

• Each aggregated set of objects is called a "group".

• Any kind of object may be grouped, but all members of any given group must be of the same class.

• Group membership is independent of block structure.

• An object may belong to more than one group.

• A single grouper object can support multiple groups.

• Grouped objects may be in the same device as a grouper or in external devices.

• Groups are controlled by special objects called "group proxies", whose properties mirror the group's
settings.

Example - next slide

control aggregation

OCA Object Model

36
v07

OCA Object Model

Control aggregation example

• Four channel mixer, two mix groups

control aggregation example

Channel 1 - Group A

OcaGain OcaMute

Channel 2 - Group A

OcaGain OcaMute

Channel 3 - Group B

OcaGain OcaMute

Channel 4 - Group B

OcaGain OcaMute

OcaGrouper OcaMute

OcaMute

OcaMute

OcaGain

OcaGain

OcaGain

Group
Proxies

group: Master Mute

group: Master Gain

group: Group B Mute

group: Group B Gain

group: Group A Mute

group: Group A Gain

+

Controller

NETWORK

Block

Worker

Control path

Signal path

OCA Object Model

37
v07v07 37

OCA Object Model

Dynamic configuration

• The OcaBlock class contains optional mechanisms that allow controllers to add and delete objects from OcaBlock
instances.

• OCA supports the following levels of reconfigurability:

dynamic configuration

Fixed The device has a permanently assigned object repertoire and
signal-flow topology, defined at time of firmware programming.

Pluggable The object repertoire and signal-flow topology of the device
may be changed while the device is offline, by plugging and
unplugging of hardware modules, adjustment of physical
controls, reloading or readjustment of software, or other
manual means.

Partially configurable Controllers may change the signal-flow topology of the device
while online.

Fully configurable A superset of 'partially-configurable', with the addition that
controllers may create and delete objects inside the device while
online.

OCA Object Model

38
v07

OCA Object Model

Connection management

• The OcaMediaTransportNetwork class and its associated set of datatypes define a comprehensive stream connection
management capability named "CM3" that may be adapted to work with different media transport schemes.

• At present, CM3 adaptations exist or are being defined for:

– AES67
– ST 2110-31
– Dante
– AVB Milan

• CM3 supports

– Multiple transport networks per device, not all of which need use the same media transport protocol
– Multiple stream connections per transport network
– Multichannel streams
– Mapping of stream channels to internal OcaPorts (OcaPort, see Signal Flow, above)
– Multiple coding schemes
– Multiple clocking schemes

• Through normal OCA mechanisms, CM3 supports full monitoring and management of connection status.

connection management

OCA Object Model

39
v07

OCA Object Model

Connection management details

• A device has one or more Application Network objects:

– An OcaControlNetwork object for AES70 traffic
– Zero or more OcaMediaTransportNetwork objects for stream traffic

• Stream connections are controlled by a hierarchy of data structures inside the OcaMediaTransportNetwork object.

• The data structures (illustrated here) record:

– source and endpoint names and addresses
– sample clocking and coding information
– mapping of stream signal channels to internal device signal paths (see illustration here)
– transmission modes (unicast/multicast, secure/insecure)
– endpoint digital reference levels
– moment-to-moment status of the connection

– ... and whatever else may be required by specific media transport standards.

• Methods and events of OcaMediaTransportNetwork allow controllers to access these data structures and monitor
their changes.

connection management details

OCA Object Model

40
v07

OCA Object Model

Connection
management
objects and
data structures

connection management structures

Oca
Media

Connection
OcaMedia

{Source|Sink}
Connector

OcaPort

MANAGER

Oca
Control
Network

Channel Map

DATA STRUCTURE

Stream
Parameters

NETWORK

DATA STRUCTURENETWORK

OcaApplicationNetwork (parent)

DATA STRUCTURE

O
c
a
N
e
tw
o
rk
M
a
n
a
g
e
r

Oca
Media
Coding

Oca
Media

Transport
Network

parameters
(SDP string)

DATA STRUCTURE

CLOCK

OcaMediaClock3

scheme name

0..n linked instances 0..n contained instances

1..n linked instances 1..n contained instances

1 linked instance 1..n contained instances

TIME SOURCE

OcaTimeSource

OCA Object Model

41
v07

OCA Object Model

Stream channel mapping

2

3

4

5

6

1

2

2

3

4

5

6

1

2

INBOUND
STREAMS

INPUT
CONNECTORS

Connector Pins OCA Ports
Channel Maps

1

2

3

4

5

6

7

8

OUTPUT
CONNECTOR

OUTBOUND
STREAM

1

2

3

4

5

6

7

DEVICE
MEDIA

PROCESSING

Connector PinsOCA Ports
Channel Map

1 1

stream channel mapping

OCA Object Model

42
v07

OCA Object Model

Connection management adaptations

• A connection management adaptation is a set of specialized classes inherited from the standard connection
management classes.

• The adaptation classes customize the connection management mechanism to fit the special requirements of a
particular media transport protocol.

• Adaptations are built according to the usual OCA inheritance rules, which ensure that specialized children of
standard classes are maximally compatible with their parents.

• At present, adaptations are planned or are being developed for the following media transport protocols:

– AES AES67

– SMPTE ST 2110-30

– AVnu Milan

– Audinate Dante

connection management adaptations

OCA Object Model

43
v07v07 43

OCA Object Model

Time and clocking

• The OcaTimeSource object manages an external or internal time reference. Multiple OcaTimeSource

objects may be configured into devices that deal with multiple time references.

• The OcaMediaClock3 object manages a device media clock source. Multiple OcaMediaClock3

objects may be configured into devices that deal with multiple clock rates, phases, references, etcetera.
When an OcaMediaClock3 object is synced to an external reference, it links to the OcaTimeSource

object that describes that reference.

• In OCA connection management, each stream connection is linked to an OcaMediaClock3 object. If all
streams have common clocks, the connections will all link to the same OcaMediaClock3 object. If not,
various streams will link to various OcaMediaClock3 objects as required.

• The device's time of day value is held by the OcaDeviceTimeManager object. If the object's time-of-
day value is synced to an external reference, the OcaDeviceTimeManager object is linked to an
OcaTimeSource object that describes the reference source.

time and clocking

OCA Object Model

44
v07

OCA Object Model

Scripting

• The OcaTaskManager class provides the ability to run predefined scripts and script-like processes.

• OCA does not specify a scripting language - it stores scripts as featureless executables called Programs.

– The device's collection of programs is called its Program Library.

– Controllers may add and delete programs to the Program Library.

• Programs are executed by OCA Tasks.

– Tasks are set up and controlled by the OcaTaskManager object.

– The permissible number of simultaneously-running Tasks is limited only by the implementation.

– A Task's execution may begin immediately upon controller request, or may be scheduled for a
future time.

• OcaTaskManager provides full monitoring and control of task execution.

scripting

OCA Object Model

45
v07v07 45

OCA Object Model

Libraries

• The OcaLibrary and OcaLibraryManager classes define a mechanism for storing and recalling
predefined device configurations.

– Using these classes, controllers can upload predefined device configurations or partial
configurations into OCA constructs called libraries.

– Subsequently, controllers can recall these configurations into OcaBlocks using the OcaBlock
method ApplyParamSet(...).

• OCA does not define the formats or contents of prestored configurations. Such formats are considered
to be implementation-dependent. The library mechanism manages the configuration datasets as
featureless binary objects.

• The library mechanism can be used for other purposes besides the management of prestored
configurations.

– Libraries are used to store Programs for OcaTasks to run - see Scripting.

– Manufacturers may define their own library types to store device-specific data.

libraries

OCA Object Model

46
v07

OCA Object Model

Physical position

• The OcaPhysicalPosition class provides a way to control and/or monitor the physical position of the
device and/or physical or virtual elements within the device. For example:

– An OcaPhysicalPosition object could monitor the physical location of a GPS-equipped device; or

– An OcaPhysicalPosition object could control the virtual location of a sound object in an object-
oriented mixing system.

• OcaPhysicalPosition supports up to six position coordinates in any of the following coordinate
systems:

1. Six-axis robotic coordinates - (x, y, z) and three rotational angles;

2. Four object-based audio systems as specified by ITU object based audio per ITU-R BS.2076-1,
section 8;

3. Three-axis terrestrial navigation coordinates as used by GPS and other satellite systems.

4. Proprietary systems as may be specified by manufacturers.

physical position

OCA Object Model

47
v07v07 47

OCA Object Model

Base object configuration of all OCA devices.

device model

Device model

OCA Object Model

48
v07v07 48

OCA Object Model device model

OPTIONAL MANAGERS

Power Manager
Manages power supplies and batteries.

Firmware Manager
Manages firmware versions and,
optionally, updates.

Network Manager
Manages connection(s) to network(s).

Media Clock Manager
Manages media clocks.

Library Manager
Manages stored parameter settings.

Audio Processing Manager
Holds global signal processing
parameters.

Power Manager
Manages power supplies and batteries.

Device Time Manager
Manages time reference objects.

Task Manager
Manages stored processing sequences.

Diagnostic Manager
Offers features to help installation and
setup.

Device Model

REQUIRED MANAGERS

Device Manager
Manages information relevant to
the whole device.

Security Manager
Manages security keys.

Subscription Manager
Manages event subscriptions.

ENUMERATION

Controllers can discover what
Managers the device implements by
retrieving the Device Manager
property Managers.

Controllers can discover what
Workers, Agents, and Networks the
device implements by enumerating
the root block.

OCA Object Model

49
v07

OCA Object Model design example

Design example

8-channel mic preamp

OCA Object Model

50
v07

OCA Object Model

Eight-channel mic preamp

• 8 analogue inputs, switchable line/mic level

• Each input with phantom power, high-pass filter, and polarity switch

• AES67 output

design example

OCA Object Model

51
v07

OCA Object Model

Start

• Basic null device

• Compliant with AES70 minimum device
specification

design example

OCA Object Model

52
v07

OCA Object Model

Add clocking and networking

• Clock object

• Control and AES67 media network
objects

design example

OCA Object Model

53
v07

OCA Object Model

Add an audio channel block

• Inner OcaBlock object

design example

OCA Object Model

54
v07

OCA Object Model

Populate the audio channel block

• Switch objects

• Gain control object

• Level monitor object

design example

OCA Object Model

55
v07

OCA Object Model

Replicate the audio channel block

• Clone seven more channels.

design example

OCA Object Model

56
v07

OCA Object Model

Done!

What's the resulting device API?

 Each object publishes its own API.

 The device's complete control API is the

union of all its objects' APIs.

 Each class's definition automatically implies

a specific API definition - no further

specification work is required.

design example

OCA Object Model

57
v07v07 57

OCA Object Model resources

Resources

OCA Object Model

58
v07

58

OCA Object Model

v07

• AES70-1 OCA framework. Fundamental mechanisms. ~50 pages.
Required reading to understand the OCA model.

• AES70-2 Class structure. The OCA object model. Details
are in Annex A, a UML file.

• AES70-3 AES70 binary protocol ("OCP.1") for IP networks.
Part of the AES protocol suite, but not part of the OCA
object model.

Near future (official names TBD):

• AES70-4 AES70 JSON protocol ("OCP.2")

• AES70-21 AES70 connection management adaptation for AES67
and ST 2110-30 media transport protocols.

• AES70-22 AES70 connection management adaptation for the Milan
AVB transport protocol.

The AES70 Standards
Family

resources

Current version of
AES70-1,2,3 is 2018.

Updates are
expected in 2020.

OCA Object Model

59
v07

59

OCA Object Model

v07

• https://ocaalliance.github.io/ aka the AES70 Techsite
Free public technical resources for AES70 developers.

• http://ocaalliance.com/

The usual sort of organizational website.

Sites

How to get AES70
standards documents

• This page on the AES70 Techsite has a guide to accessing the official AES70 standard.

resources

• The OCA Alliance is responsible for the technical content of OCA.

• Chair of the OCA Alliance Technical Committee is the author of this presentation:

Jeff Berryman
Senior Scientist, Bosch Communications Systems
ja.Berryman@us.bosch.com
+1 952 457 5445 [US East Coast]

• The Alliance business contact is:

Ms. Tina Lipscomb
Tina.Lipscomb@oca-alliance.com
+1 425 870 6574 [US West Coast]

The OCA Alliance

